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CONTINUOUS NORMAL FORM OF A CLASS OF NONAUTONOMOUS 
PARAMETRICALLY-PERTURBED SYSTEMS AND ITS APPLICATION* 

1a.M. GOL'TSER 

A problem on the continuous nomarlization of nonautonomous parametrically-perturbed 
systems of differential equations with a constant linear part is examined. A class 
of nonautonomous systems is delineated, which leads to a continuous normal form of 
resonance type under a formal transformation with continuous coefficients bounded 
with respect to a parameter and to time. The structure of the normal formofalmost- 
periodic systems is detailed. The results obtained are applied to the study of the 
problem on the birth of stationary modes in a neighborhood of the resonance. 

The continuous normal form was introduced earlier in /1,2/ for autonomous parametrically- 
perturbed systems and the problem of the change of stability as the system passes through re- 
sonance was studied. For nonautonomous systems of differential equations not dependent on 
parameters, the normal form has been studied for periodic systems /3-77/ as well as for systems 
whose coefficients are finite trigonometric sums /8,9/. General nonautonomous systems indep- 
endent of parameters were analyzed in /lo/. Methods developed in /5/ were generalized in /ll/ 
to systems depending analytically on small parameters. 

1. Statement of the problem. Preliminary results. Let K”(R”) be an n-dimen- 
sional complex (real) vector space, P” be the set of n-dimensional integral vectors p = (p,, 
. . .( p,), I p I = hl +... + IA I. If ps > 0, then P E P,“. Let D C Rd be some closed d-dimen- 
sional domain. By C we denote the set of complex-valued functions f(t, CL) continuous and 
bounded in R' X D, t=RP, p ED. In K”we consider a differential equation system depending 
continuously on a parameter 

z’==A(~)z+ 5 F(‘)(t,p,z) (1.1) 
1=2 

where F'j'(t,p,z) is a jth-order vector-valued form in z, while its s -component is 

(1.2) 

We assume that the n X n -matrix A@)is reduced to Jordan form by a linear transformatron con- 
tinuous in D. The presentation is made only for the case when A (p) = diag (PI (in), . . .1 pa (I+. 

As an admissible class of transformations we shall examine the formal series 

t=z + 5 @"'(t,P, x) 
,=2 

(1.3) 

in which the structure of the vector-valued form CD"' is the same as in (1.1). To be precise, 

writing CD"' 
the system' 

as in (1.2), we take it that (pp"(tr p)E C. We shall examine the simplest form of 

_ 

z"=A(~)s+ >~,d"(~. ~9s) (1.4) 

to which system (1.1) is reducible by transformation (1.3). Let g,("'(t, p) be the coefficients 

of the s-th equation in (1.4). Taking mp(l)(t, p) and g,'"(t, JL) as unknown, to determine them 
from the condition of reducibility of (1.1) to (1.4) we obtain the equation 

cpF'+ (p- S,,p(p)) &'=$)(t,~) -gg'p"'(t.IL) (1.5) 

where v,")(t,p) is a known function of class C if all the preceding coefficients %(j' , g,(j), 
tqJ<lPl, are of class C, &is the s-th unit vector, p (p) = (pi(p). . . ., p,(p)), <, > is the 
scalar product. Thus, the problem posed is essentially related to the resolution of the 
question on the possibility of choosing functions g, @)(t, P)E C such that Eq. (1.5) has a solu- 

tion ofthesame class. If we succeed in choosing g,'"' as constant in t, then system (1.4) is 
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autonomous (and linear if all g, (*) = 0). It is comparatively easy to examine the case when 

Rep,(p)>a>O or Rep,(p)<o<<) in D(for any s). In this case, for any gp@)(t, p)~ c, 
(1.5) has a solution unique, bounded and continuous in Rl X D. When gP@' = Cl this solution 
is 

(~68) 6 CL) = S e=p IQ - L p(p): CT - t)] v’,“’ (T, p) dz 
0 

(1.6) 

(The continuity in ).k follows from the uniform convergence of the integral). Thus, in this 
noncritical case system (1.1) is reducible to a linear system. 

We shall analyze the problem on the continuous normalization of system (1.1) in the more 
complex situation when in Dthere exists at least one point p0 at which at least one eigen- 
value of matrix A (p) has a zero real part. In this case we can find p such that Re <p - 6,, 

P(P)>-+~ as ~--tk and for these pthe solution (1.6), in general, ceases to existatpoint 

ILO. In connection with this the necessity arises of choosing g,(')(&p)EC such that in the 
situation described Eq.(1.5) has a solution from C. We assume the simplest choice gp@) = up@), 
but it does not yield the maximum simplification of system (1.1) in the class of transforma- 
tions (1.3). Let us study in more detail an equation of form (1.5) 

cp' = s (IL) cp + w (G P) = a (P) cp + v 0. P) - g(t, P) (1.7) 

where the function a(p) = T)(P) $ i k(p) 1s continuous in D. We separate D into subsets D, = 
{p 19 (p) = O),Df = {p 1 q(p)$Oo) and we introduce the functions 

t 
F* (t, p) = j ew(*)Tw (T, p) dT, PED* 

0 

e-‘k(~)~w (T, p)d~, PED 
0 

For function F*(t, IL) we introduce the mean value 

T 

M*(p)= lim -$- 5 Ff(t, p)dt 
r-+= o 

k!UlUla 1.1. Let function ~)(t,p)E C be such that: 
1) function F(t, p) is bounded with respect to I in R' for all PE D, 
2) the mean 

i+T 

M(p)= lim L \ F(t,p)dt 
r4=2T rlT 

(1.8) 

exists uniformly in TV and t. Then, if D, I_ D_# @, then a unique solution of Eq.tl.7) of 
class Cexists, defined by the formula 

where E (P) = =F M, (~1, p ED*, E (1.4 = -M tp), p ED,. 

PrOOf. We consider the general solution of Eq.(1.7), having the form (1.9) with an arbit- 
rary constant E(F). From the lemma's condition 1) it follows that if PE& then (1.9) is a 
solution of class C for any E(P). If, however, CED*, then for each fixed )I the Eq.(1.7) with 
any wcr,~) has a solution bounded in R', which is determined by formula (1.9) with the fol- 
lowing choice of E(P): 

f*(II)=-+~C-.(ll)rW(T,)I)dT, gED+ (1.10) 
0 

In these equalities the functions e*(p) are continuous in p in the appropriate domains. By 
varying the value of E(P) in Do. we can construct different solutions of Eq. (1.7), bounded 
in RI. We convince ourselves that among them there exists a unique solution continuous in 
y=D. The discontinuity of the solutions with respect to p is connected with the behavior of 
P,(P) as 1' approaches parts of the boundary of sets D+ belonging to D,. We denote these 
parts by T*. If P,,E r*, then the integrals (1.10) do not exist in general. 
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/12/ 
The subsequent presentation relies on the method of Ce&ro summation of improperintegrals 
, according to which the improper integral 

is ascribed the value 

+- 

S f (0 dt 
0 

If the original integral converges, then 

+m 

S f (t) dt = M (@) 
0 

(regularity of the Ces&o method). Using the method mentioned,we convince ourselves first of 
all that the function F*(t, p) in D&has a mean 

H* (Pi -rs* (II) 11.111 

continuous in p, which follows from the convergence of integrals (1.10). We ascertain the 
behavior of function M+(C) as p approaches I'+. Summing the function e-iktu)z~(q~) for T~JR[O;+ 

00). we obtain (uniformly in (r by virtue of condition 2) 
t 

lim + 
s T--l-~0 o 
F (T. FLJdT = M (P) 

Now fixing the point pp6r+, we have 

T T 

lim M+(&= lim iim f 
we. s (r-tkT4ao e 

P, (T, p) d+ = lim F, (7, p) ds = .M fire) 

(1.12) 

(1.13) 

When computing the limit we used the continuity of F+(%,p) and theuniformityin p of Limit 
(1.12), permitting us to interchange the order of the limit passages. Further, letus consider 
the function e(k) on the boundary r_. We write the second relation in (1.10) as 

M_(p)= "r" @%D(- t, P)dT 

For 11pgar_ we have 
il 

(1.14) 

When computing the limit, besides the interchange of limit passages, we have used the equality 
of means i#(f(-f))= N(f(t)) resultant from (1.8). It follows from (l.ll)- (X.14) that by set- 
ting E((I)= rM*(p)whenp= Df and e (p) i= M(P) when ~=&,weobtaintheunique solution (1.9) of class 
c. 

Note. The proof given relies essentially on the Ces&o summation method. Precisely be- 
cause of this the lemma's main requirement is connected with the assumption of existence of a 
mean value. This requirement is satisfied, in particular, by periodic and almost-periodic 
systems to which we shall henceforth apply Lemma 1.1. By using other regular methods of com- 
puting the values of divergent integrals, we can obtain other conditions for the existence of 
solutions of class C of (1.7). However, we do not dwell on this here. 

Lemma 1.1 enables us to delineate a class of nonautonomous systems for which a continu- 
ous normal form can be constructed. From the presentation we see that the system (1.4) cor- 
responding to it will contain only resonance terms zp in which p satisfies the condition 

(3ipo E D) (Re <P - b P ho)> = 0) 

2. Continuous normal form of ahtost-periodic systems. We consider system (1.1) 
under the assumption that all the coefficients fp (*)(t,p) are almost-periodic functions of t 
uniformly with respect to p in D, and we denote the set of all such functions by c, /13,14/. 
All bounded solution6 of Eq.(1.7) with almost-periodic inhomogeneities are almost-periodic 
functians; therefore, the problem, analyzed in Sect.1, of the transformation of system (1.1) 
to simplest form in the class of transformations (1.3) with coefficients from Cis equivalent 
for almost-periodic systems to the same problem but in the class of the transformation of (1.1) 
with almost-periodic coefficients. Lemma 1.1 yields the conditions for the existence of a 
solution of Eq. (l-7), continuous in Lf. Let us dwell on the question of choosing in (1.7) a 
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function S(t, ~L)E C,, guaranteeing the fulfillment of the conditions of Lemma 1.1. We consider 

Eq.(1.7) wherein u(t,~)E C,. Let S, = {h,} be the spectrum of function v and S,"(p) = (a- 

k(p)} be the displaced spectrum. 

Definition 2.1. The Fourier exponent A,, is called a resonance exponent if (3p0EDo) 

(4, - k(pLg) = 0). 
In accord with the definition we separate S, into resonance (R,) and nonresonance (H,) parts. 
To them correspond analogous subsets R,,“(P),H,,~(~) in the displaced spectrum. We say that Eq. 

(1.7) is of type Fif the nonresonance part of the displaced spectrum of function u(t, p) is 
nonzero uniformly in p 

(F)(3a>O)(vCLEDO)(va~H,)(I)lN-k(~) I>a) 

We introduce into consideration a function ~~(1, IL) which we define as follows. Let a be a 
sufficiently small fixed number. On the complex plane K* we consider a, i.e.,aneighborhood 
of zero U,(O), the displaced spectrum S,k(p) and the set 

l~:,.(~)=I1un (C(P) n hdw 
9 

To this set corresponds an analogous part S,#, of spectrum S,. The whole resonance part of 
spectrum S, is contained in S,., but the latter can contain as well a part of the nonreson- 
ance set Hv if H,has a limit point in R,. By V, (t, p) we denote the II a-cut" of function 

v (t, P), i.e., a nearly periodic function whose spectrum coincides with S,.,, while theFourier 
coefficients coincide with the corresponding Fourier coefficients of function v (G P). The 
function v(t, p) - %(t, p) satisfies condition (F) and belongs to class c,. 

Lemma 2.1. Let D be a closed bounded set in Rd,D, U D_# (zI* and let the function v(t, 
p)E C, satisfy, together with d(p), a Lipschitz condition in ~-Then Eq.(1.7) with 

g 6 I.4 = ra (G P) (2.1) 

has a unique solution m(t, P)E Co. If (1.7) is an equation of type F, then 

g(t,p)=&nh(p)@ (2.2) 

where VA(~) are the Fourier coefficients of function u (t, p) and R, is the resonance part of 
this function's spectrum. The solution cp (t, p) is determined by formula (1.9), has the spect- 
rum H,,, satisfies a Lipschitz condition and hasamean value equal to zero. 

The proof (which we do not carry out in detail) consists in verifying the fulfillment of 
the ccmditions of Lemma 1.1. When g= E,= (when condition (F) is fulfilled this equality re- 
duces to (2.2)), with the aid of the Favard theorem /15/ we convince ourselves of the fulfil- 
lment of condition 1 of Lemma 1.1 and of the fact that F(~,)L)Ec~ The latter ensures the ex- 
istence for any fixed mean value (1.8). The uniformity With respect to p of the limitin (1.8) 
is ensured by the Lipschitz condition. Next, we can establish that for the values of E (P) 
indicated in formula (1.9) the solution's spectrum coincides with H,, while the mean value 
equals zero. 

We pass on to the question of the normalization of a uniformly almost-periodic 
(1.1) whose coefficients fp(8)(t, p) 

system 

rum of coefficient fp(0 
satisfy a Lipschitz condition in p. 

(t,p). We introduce the sets: S,, the system's 
Let S,,, be the spect- 
jth-order spectrum;S1') 

the system's spectrum in the k-th approximation; and Saw, the system's spectrum, i.e., 

Sj=&,PtJ,SP,!* szk=/Jasj _' 

BY Ntk(NtOC) we denote the minimum modulus of set S,"(Stm"). The elements YEN," have the 
representation (rj are integers) 

Y =: I: rjJ-j* hj E SSk (2.3) 

In Nk we pick out a subset of those elements y for which in (2.3) Z Ir,l< k, YEN~‘~_ 

Definition 2.2. System (1.1) has a kth-order internal resonance at a point P,,E D 
if there exists such an integral vector go P” 
IqlIi-...-tIqnI=k, such that 

with relatively prime components Q and Iq ) = 

i<q, P (PO)> E A'ik 

(For o-periodic systems N,- = (2kar0-~), while for autonomous systems Nzm ={O), and for a fixed 
p we arrive at the usual definition of internal resonance in such systems). 

Definition 2.3. The vector p~p+~, Ip I = k, and the corresponding terms of the s-th 



equation in system (1.1) , are said to be resonance in D if 

(3l.h EO (i<p - 6,, P (PO)) E Nlk) 

where 6, is the s-th unit vector in R". 
tion is denoted Ln@). 

The set of all resonance vectors of the s-th equa- 

Definition 2.4. System (1.1) is called an F-system if for any resonance vector p. 
l~I=k the point i<p -S,,p(pO)> is not a limit point of set N,". 

For the normalization of system (1.1) with the use of transformation (1.3) we should suc- 
cessively solve Eq.(l.S) 

with the aid of Lemma 2.1, confining ourselves to the following alternatives: 
1) if p is a nonresonance vector, then in (1.5) we set g$)(t, p) =0 and from (1.5) we 

find 'p#)(t,~) as the unique almost-periodic solution of class C,; 
2) if p is a resonance vector, then we set g,(@(t, p) = v$!,(t, IL); here again (pp@)(tr p) is 

found as the unique solution of class Co. 
We note that since when solving Eq.(l.S) the spectrum of function (P+J) coincides with the 

nonresonance part of the spectrum of z@)(t,p), when solving Eqs.(l.5) successively the spect- 
rum of function u$)(t, CL), depending on (P&)(&P) 1 q I( Ip 1, is contained inN,'k,where k = (p 1, 
Precisely this is taken into account in Definition 2.3. If (1.1) in an F-system, then each 
equation in (1.5) satisfies condition (F) and the selection of g,@)(t, p) simplifies 

&‘(& p) - x 
-q 

4% (p) eth 

Summarizing the above presentation, we arrive as the following statement. 

Theorem 2.1. Let system (1.1) be uniformly almost-periodic in a closed bounded domain 
D and let p,(p), fp@)(t, p) satisfy a Lipschitz condition in CL. Then a transformation (1.3) with 

uniformly almost-periodic coefficients, continuous in PLED, exists leading system (1.1) to 
the continuous normal form 

If (1.1) is an F-system, then (2.4) becomes 

where Rv@) is the resonance part of the sepctrum of functions VP(S) (t, p). 
Fro& the theorem we see that the continuous normal form of resonance systems are autonom- 

ous only if (1.1) is an F-system and R,,(S)= (0). The latter is fulfilled obviously if in (1.1) 
,, 

there is only the identity resonance and, possibly , an internal resonance of the form 

<m, p (pJ> = 0, pLo ED,, mE Fn 

Let the F-system have 1 pairs of purely imaginary eigenvalues at the point p,, while the 

remaining eigenvalues PI(~) have negative real parts. By o,(p) f ivS(@) wedenote the critical 

eigenvalues, o.&#) = 0, v, (po)#O, s = 1, . . ., 1. Let D be aneighborhood of point pO. We take 
it that the kth-order internal resonance 

<m,v(~r,)> = hi Nik7 im I = k (2.5) 

exists at point PLO. Taking (2.5) as the unique resonance in D, we write out the continuous 
normal form in the situation described. We represent the vector z as a triple of vectors x = 

(v, &w). where u is an l-dimensional complex vector corresponding to the critical variables 
and w is an n - 21 -dimensional vector. The original real system (1.1) is written in the 
variables ~,tS,w in the following manner: 

(2.6,) 

p. q E p:, 0=(01,...,01), 0, = u,n, 
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Here R, is the set of resonance pairs (p,q) satisfying the equation p - q -hs, = X!!9m,where 
x’,“!, is any integer, Q is the set of resonance pairs satisfying the condition p -q = +,pm 
with some integer xp,q. 

If A = 0, then (2.6) is an autonomous system coinciding in structurewiththenormalform 
of autonomous systems. For such systems, not depending on aparameter, the expanded notation 

exists in /16/. When I#0 the system is nonautonomous. However it is not difficult to ob- 

tain an autonomous system if we introduce the substitution 
u, = r,exp Ii (v, (pJ t + cp,)l 

with new real variables r,, cpa ’ After manipulations we have 

(2.7) 

Taking into account that in the first group of equations the variables cp, occur only in the 
combination II, = (m,cp>, then, by introducing in the place of one of the equations for cpI the 
equation for 9, from system (2.7) we can separate out an 1 Jr l-dimensional subsystem in 
which the equations for r,(s= i,...,l) and *occur. System (2.7) can be used to study a 
number of problems of the bifurcation type. For example, it is possible to study the change 
in stability of neutral systems when passing through resonance. In an autonomous system a 
detailed analysis was made in /1,2/. Below we dwell on another bifurcation problem. 

3. Birth of stationary modes in a neighborhood of third-order resonance. 
We shall reckon that the four-dimensional system (1.1) has in domain Dtwo pairsofeigenvalues 
a,(P) f iv,(p) such that a,(~~) = 0, p. ED , and that the resonance 

Vl(PO) - 2v,(po) = XE N;S (3.1) 

is realized. We take it that Dis a neighborhood of po. By D*we denote the deleted neigh- 
borhood of point p. and we let o,(po)# 0, Vp= D. In complex-conjugate variables system (1.1) 
is 

5 ' = (a, (p) + iv, (P)) 2, + 21(‘) (P, 2, 2, t) + . . . (3.2) 

The resonance terms in (3.2) are the following: fotoo(l)~z* in the first equation, fioo,O)zl~, in 
the second. Continuous normalization up to third order takes (3.2) (under the condition that 
(1.1) is an F-system) to the form 

U 1' = h (14 + iv, (IL)) U1 + aI (IO @UZ + 0 (II 1~ II”) 
a~'=@,@) + &(N)n~+ =z(N~+G~ +Q( II s 11’) 
al (p) = M {f’&@*), a2 @) = M (h2&ei”} 

We introduce the variables r., qr and the small parameter e by setting 

u,=sr,erpli(v, @0)t+ cp,)l 

(3.3) 

BY picking out in the new system of type (2.7) the three-dimensional subsystem r1,r,,q==,-2~,, 
after the scale transformation P1=a2rl,P1=Grs, where a,(p) = I a,(P) I, we obtain 

Pl' = 4 (a) Pl + a, (rp) p*x+ 0 @*) (3.4) 
Pa' = Ox(P) Pz + % (rp) PlPI + 0 (e') 
rl;' = 6 (P') + E (Cl (rp) PI-’ PI’ + 2% (9) h) + 0 (6 
(a (p) = VI (p) - 2% (p) - L bi (9) = sin (9 - 0,)~ 
ci ($) = eos(Ip.- et). sin Bi = - ai-1 Re ots 
cost+ = (- l)'-'alV1 Im ai, I = I, 2) 

At the resonance point I" = PLO. where o(Po)=6(P,) = O, the stability analysis is completely 
analogous to that of autonomous systems /16/. 
P? &) + n. Moreover, 

System (3.4) is unstable when p= Pa if 6,(po)# 
in the first approximation with respect to E it has a partial solution in 

the form of IIan unstable ray" 
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where % is a root of the equation 

et&! ($ - 01 (PO)) + 2 ctl3 (9 - 82 &)) = 0 (3.5) 

from the interval (es (PO), 0, (d-i-s) (we reckon that 6x (PO) <e, (pO)), while z(t) satisfies the equa- 
tion z'= ez'. Let us consider system (3.4) in domain D*. 
of system (3.4), generated as p passes into the domain 

We shall seek the stationary modes 
D*. Rejecting in (3.4) nonlinearit- 

ies o(s*), we consider the amplitude equations (the right-hand sides of (3.4) equated to zero). 
We take it that o,(p),8(p) are of the order of smallness of e. This assumptions follows in 
natural fashion from the continuity of o,(P),6(p) and the smallness of dimain D. Seeking the 
positive solutions of the system of amplitude equations, first of all we find pr and pz from 
the first two equations; next, from the third equation we obtain 

01 (P)CQ (* - 61 (P)) + 2%(P) ctg(rp -081 (P)) = 6 (P) (3.6) 

Let (Jo and sp be of one sign. Then Eq.(3.6) in the interval (13,,8,+zr) (as before we reckon 
that e1 (p) <8, (p)) has a root 9 =qPt* (p) such that J~(&*)>O and a root 0 = J1** =vl* f n, but 
St (*r*) <O. 

We represent domain D* as D* =D++* UD+_* UD,* UD__*, where the first sign corresponds 
to the sign of s1 and the second, of ez. From what we have presented it follows that the 
steady-state mode 

rp= $1.9 h = P1 (*X8)* P, = p*(*1*) (3.7) 

is generated in the domain D__+. The mode 

$J = (PI'? Pl = P1 ($r% PI = Pz(tp,') (3.8) 

exists in dcmain D++*. We see that for a fixed I and as p-p,, we have pI &*), p1 (rpt*)- 0. When 
a1 - a,, b = o(uJ the roots **.*** tend to the corresponding root of Eq.(3.5): tpl*-~Ipo, q,*-\p.,-+- 
2%. In other words., in this situation the generation of the steady-state mode (3.7) takes 
place close to the unstable ray existing in the system when p= PO. Analysis of Eq.(3.6) in 
the domains D+_* and D_+*shows that it does not always have a solution. The existence of a 
solution depends upon the relations between oi,s,,& This case is not examined here in more 
detail. 

Let h*,~*,v be some stationary resonance mode (in particular, (3.7) or (3.8)), i.e., 
q* is some root of Eq. (3.6), for which the pl*,p,* obtained from the amplitude equations are 

positive. Let us consider the question of the stability of this mode. Having set up the 
system of variational equations, we consider its characteristic equation 

p - 2 (0, f a,) 3 + I%* + e** ctgl (rp. - 61) - 
~u,o, 0tg (9. - e,) ctg w - yl Y - H = 0 

x== - 2qu,(q + 2u, + 0, ctg*w -e,) + 20, Ctg*(** - ej) 

m application of the necessary stability conditions (Stodola's theorems) shows that modes 
(3.7) and (3.8), for which o,ol>O, are unstable. To detect in the system the resonance modes 
of the form Ip=9*,p1= p~*.p,=O we should consider as well the values of p for which o.(p),d(p)= 

0 (e% and carry out one further step of the normalization. The latter is connected with the 
fact that when considering the amplitude equations to within a, pl=O follows from pt=o. 
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